Stimulation of Corticosterone Secretion by the Selective 5-HT_{1A} Receptor Agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the Rat

EDMUND PRZEGALIŃSKI, BOGUSŁAWA BUDZISZEWSKA, AMELIA WARCHOŁ-KANIA AND EWA BŁASZCZYŃSKA

Polish Academy of Sciences, Institute of Pharmacology, 31-343 Kraków, Smętna 12, Poland

Received 25 July 1988

PRZEGALIŃSKI, E., B. BUDZISZEWSKA, A. WARCHOŁ-KANIA AND E. BŁASZCZYŃSKA. Stimulation of corticosterone secretion by the selective 5-HT_{1A} receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the rat. PHARMACOL BIOCHEM BEHAV 33(2) 329-334, 1989. - The selective 5-HT1A receptor agonist 8-OH-DPAT increased serum corticosterone concentration in rats in a dose-dependent manner. The synthetic corticoid dexamethasone lowered the serum corticosterone level and abolished its rise induced by 8-OH-DPAT. The corticosterone response to 8-OH-DPAT was also antagonized by spiperone, (±)- and (-)-pindolol and (\pm) -propranolol, all of which have been shown to have a high affinity for 5-HT_{1A} receptors, though in most cases no complete blockade was found. A partial antagonism of the response was also observed after flumazenil, a benzodiazepine antagonist. On the other hand, the 5-HT_{1B} receptor antagonist 21009, the 5-HT₂ receptor antagonists ketanserin and pirenperone, the 5-HT₃ receptor antagonist ICS 205-930, the α_2 -adrenoceptor antagonists yohimbine and idazoxan, the β -adrenoceptor blocker with no affinity to 5-HT₁ receptors, atenolol, the dopaminergic antagonist pimozide, the histamine receptor blocker chloropyramine and the opiate receptor antagonist naloxone did not affect the hormonal response to 8-OH-DPAT. The 8-OH-DPAT-induced corticosterone secretion was not affected either in rats pretreated with p-chlorophenylalanine (PCPA, an inhibitor of tryptophan hydroxylase) or p-chloroamphetamine (PCA, a drug-inducing lesion of serotonergic nerve terminals). It is concluded that 8-OH-DPAT-induced increase in serum corticosterone concentration results from its action at a site different than the adrenal cortex and is mediated by postsynaptic 5-HT_{1A} receptors, whereas other subtypes (5-HT_{1B}, 5-HT₂, 5-HT₃) of 5-HT receptors do not participate in this response. Among other receptors only benzodiazepine ones are involved in the hormonal response to 8-OH-DPAT, whereas dopaminergic, α_2 and β -adrenergic as well as histamine and opiate receptors are not.

8-OH-DPAT 5-HT_{1A} receptor subtype 5-HT receptor antagonists Serum corticosterone

SEVERAL data suggest that serotonergic mechanisms are involved in regulation of corticosterone secretion. In fact, administration of 5-hydroxytryptamine (5-HT) precursors, releasers, reuptake inhibitors, or receptor agonists increases serum corticosterone levels (8, 9, 37). Furthermore, recent studies in this field demonstrated that two subtypes of 5-HT receptors, i.e., 5-HT_{1A} and 5-HT₂, mediate this hormonal response (20,24).

As to the involvement of 5-HT_{1A} receptors, the main evidence shows that 8-OH-DPAT, a selective agonist of these receptors (26), increases serum corticosterone and adrenocorticotropin hormone (ACTH) concentrations (10, 20, 24), and that these responses to 8-OH-DPAT are blocked by the drugs known to have 5-HT_{1A} antagonist properties (10,20).

However, as far as the role of 5-HT_{1A} receptors and the effect of 8-OH-DPAT are concerned, some other issues seem to deserve further examination. Thus, the evidence has been provided that 5-HT_{1A} receptors are located both pre- and postsynaptically (29,38), and that they mediate different responses to 8-OH-DPAT, e.g., hypothermia or hyperphagia and the stereotypical components of the serotonin syndrome, respectively (12, 13, 18, 36). Therefore, it seemed of interest to determine which 5-HT_{1A} receptors, i.e., pre- or postsynaptic ones, are involved in the corticosterone response to 8-OH-DPAT. Moreover, it has been recently reported that, besides 5-HT_{1A} receptors, α_2 -adrenoceptors are also involved in some effects of 8-OH-DPAT, such as a decrease in 5-HT metabolism (25) and hyperglycemia and hypoinsulinemia (3) in rats. Since stimulation of α_2 -adrenoceptors also increases ACTH and corticosterone secretion (32,33), examination of the role of these receptors in the 8-OH-DPAT-induced increase in the serum corticosterone level was another purpose of the present study. Finally, since in our experiments the response to 8-OH-DPAT was not fully blocked by 5-HT_{1A} receptor antagonists—even when administered in high doses—we also examined the influence of antagonists of other 5-HT receptor subtypes and other neurotransmitter receptors on that response.

METHOD

Male Wistar rats weighing 220-250 g were obtained from

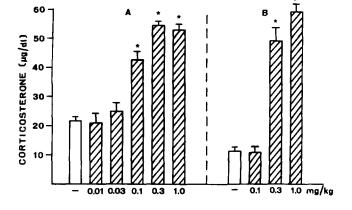


FIG. 1. Dose-response effect of 8-OH-DPAT on the serum corticosterone concentration in rats. 8-OH-DPAT was administered SC 30 min (A) or 60 min (B) before decapitation. Each bar is the mean \pm S.E.M. of 10–12 animals. *p<0.001 vs. corresponding control group.

licensed dealers. They were housed 5 animals to a cage for at least a week until use in the experiments, in a temperature-controlled room $(22 \pm 1^{\circ}C)$ with a 12:12 light-dark cycle (lights on at 7.00 a.m.). Food and water were always available ad lib. All experiments were carried out between 9.00 and 11.00 a.m. to avoid the influence of the circadian rhythm on the serum corticosterone level.

In the first experiment, dose-effect and time-effect relationships were determined for 8-OH-DPAT-induced corticosterone secretion. 8-OH-DPAT (Research Biochemical Inc.) was dissolved in a solution of 0.1% sodium metabisulfite and administered subcutaneously (SC).

In subsequent experiments the effects of various drugs on

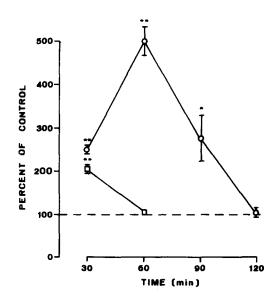


FIG. 2. Time-response effect of 8-OH-DPAT on the serum corticosterone concentration in rats. 8-OH-DPAT was administered SC in doses of 0.1 mg/kg (\Box) or 0.3 mg/kg (\odot). Values are the mean ±S.E.M. of 9–10 animals. Mean corticosterone concentrations in control rats were 24.4 ± 1.1 µg/dl (30 min) or 9.9 ± 1.1 µg/dl (60–120 min). *p<0.01, **p<0.001 vs. corresponding control group.

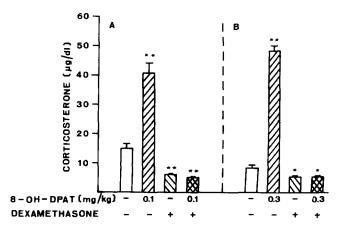


FIG. 3. The effect of 8-OH-DPAT on the serum corticosterone concentration in rats pretreated with dexamethasone. 8-OH-DPAT was administered SC 30 min (A) or 60 min (B) before decapitation. Dexamethasone $(3 \times 1 \text{ mg/kg})$ was injected IP 72, 48 and 24 hr before 8-OH-DPAT. Each bar is the mean \pm S.E.M. of 10-12 animals. *p<0.02, **p<0.001 vs. corresponding control group.

8-OH-DPAT-induced corticosterone secretion were determined. The following drugs were used: atenolol (ICI Pharma), DLp-chloroamphetamine hydrochloride (PCA) (Regis Chemical Co.), DL-p-chlorophenylalanine methyl ester hydrochloride (PCPA) (Sigma Chemical Co.), chloropyramine (Polfa), dexamethasone (Sigma Chemical Co.), flumazenil (Ro 15-1788) (Hoffmann-La Roche), ICS 205-930 (Sandoz), idazoxan hydrochloride (Reckitt and Colman), ketanserin (Janssen Pharmaceutica), naloxone (Endo Laboratories), pimozide (Gedeon-Richter), (\pm) - and (-)-pindolol (Sandoz), pirenperone hydrochloride (Janssen Pharmaceutica), (\pm) -propranolol (ICI Pharma), 21009 (Sandoz), spiperone (Janssen Pharmaceutica), yohimbine hydrochloride (Sigma Chemical Co.). In another experiment the effect of the latter drug on the secretion of corticosterone induced by clonidine (hydrochloride, Boehringer Ingelheim) was also examined.

Ketanserin was dissolved in warm water. (\pm) - and (-)pindolol were dissolved in a minimal quantity of 0.1 N hydrochloride acid and brought to the final volume with saline. Spiperone was dissolved in 0.1 M tartaric acid and titrated to pH 6 with 0.1 N sodium hydroxide. Yohimbine was dissolved in distilled water and diluted with saline. Dexamethasone, flumazenil, pimozide and 21009 were suspended in a 1% aqueous solution of Tween 80. The remaining drugs were dissolved in 0.9% saline. The drugs were administered SC or IP in a volume of 2 ml/kg at doses (expressed in terms of the respective salts) and times indicated in the Results section. Control rats received an equal volume of saline or appropriate solvent vehicle.

Rats were decapitated at different times after 8-OH-DPAT administration (30–120 min in time-effect relationship experiment and 30 and/or 60 min in all other experiments) and 30 min after clonidine injection. Trunk blood was collected and allowed to clot. After centrifugation, serum was withdrawn and stored at -20° C prior to analysis. Serum corticosterone level was measured spectrofluorometrically by the method of Glick *et al.* (11).

The statistical significance between groups was analysed by Student's *t*-test.

RESULTS

8-OH-DPAT administered 30 or 60 min before decapitation increased dose-dependently serum corticosterone concentration

Treatment		I	Ц					
	N	µg/dl	%	N	µg/dl	%		
Vehicle + vehicle	8	15.2 ± 0.9	100	8	11.3 ± 2.0	100		
Vehicle + 8-OH-DPAT	8	35.8 ± 2.6‡	236	9	53.1 ± 2.0‡	470		
Spiperone (0.3)* + 8-OH-DPAT	8	32.7 ± 4.5†	215	9	43.5 ± 5.6‡	385		
Spiperone (1.0) + 8-OH-DPAT	9	33.6 ± 3.5‡	221	9	45.2 ± 3.3‡	400		
Spiperone (3.0) + 8-OH-DPAT	9	19.6 ± 4.0 §	129	9	27.2 ± 4.0†¶	241		
Vehicle + vehicle	9	15.2 ± 1.2	100	10	7.6 ± 0.9	100		
Vehicle + 8-OH-DPAT	12	45.3 ± 2.6‡	298	9	42.9 ± 2.1‡	564		
(±)-Pindolol (2.0) + 8-OH-DPAT	8	34.8 ± 1.8	229	10	$19.7 \pm 2.3 \ddagger$	259		
(±)-Pindolol (4.0) + 8-OH-DPAT	11	30.4 ± 2.2‡¶	200	10	$16.3 \pm 2.6^{\dagger}$	214		
(±)-Pindolol (8.0) + 8-OH-DPAT	10	$31.0 \pm 2.5 \ddagger $	204	10	$22.1 \pm 2.8 \ddagger $	291		
(-)-Pindolol (0.1) + 8-OH-DPAT	9	42.0 ± 3.6‡	276					
(-)-Pindolol (0.3) + 8-OH-DPAT	11	41.3 ± 3.4‡	272					
(-)-Pindolol (1.0) + 8-OH-DPAT	11	28.6 ± 2.9‡¶	188					
Vehicle + vehicle	8	19.1 ± 2.7	100					
Vehicle + 8-OH-DPAT	10	51.0 ± 3.5‡	267					
(\pm) -Propranolol (4.0) + 8-OH-DPAT	12	39.0 ± 3.1‡§	204					
(\pm) -Propranolol	9	35.7 ± 4.3 ‡§	187					

 TABLE 1

 THE EFFECT OF 5-HT1A RECEPTOR ANTAGONISTS ON SERUM

 ORTICOSTERONE CONCENTRATION INCREASED BY 8-0H-DPA1

8-OH-DPAT was administered SC in a dose of 0.1 mg/kg 30 min before decapitation (I) or in a dose of 0.3 mg/kg 60 min before decapitation (II). Spiperone was administered IP 60 min before 8-OH-DPAT; (\pm) - and (-)-pindolol and (\pm) -propranolol were injected SC 30 min before 8-OH-DPAT. Values represent the mean \pm S.E.M.

(16.0) +

8-OH-DPAT

*mg/kg; $\dagger p < 0.01$, $\ddagger p < 0.001$ vs. corresponding vehicle + vehicle group; \$ p < 0.05, \$ p < 0.001 vs. corresponding vehicle + 8-OH-DPAT group.

(Fig. 1). In a time-related experiment the peak effect of the drug was also dose-dependent, but the maximum effect after the higher dose appeared later. Thus, after a dose of 0.1 mg/kg, the maximum increase in corticosterone level (by ca. 100%) appeared 30 min after 8-OH-DPAT administration, and after a dose of 0.3 mg/kg (maximum increase by ca. 400%), 60 min after its administration (Fig. 2). On the basis of these results in the majority of further drug interaction experiments, 8-OH-DPAT was administered in a dose of 0.1 mg/kg (30 min before decapitation) or 0.3 mg/kg (60 min before decapitation).

Dexamethasone treatment significantly decreased serum corticosterone concentration and completely prevented 8-OH-DPATinduced elevation of corticosterone level (Fig. 3).

TABLE 2

THE EFFECT OF 5-HT_{1B}, 5-HT₂ AND 5-HT₃ RECEPTOR ANTAGONISTS ON SERUM CORTICOSTERONE CONCENTRATION INCREASED BY 8-OH-DPAT

Treatment	N	I µg/dl	%	N	II µg/di	%
· · · · · · · · · · · · · · · · · · ·						
Vehicle + vehicle	11	18.8 ± 2.2	100	11	10.6 ± 1.5	100
Vehicle + 8-OH-DPAT	9	41.7 ± 2.0†	222	12	46.4 ± 3.9†	438
21009 (2.0)* + 8-OH-DPAT				12	39.5 ± 4.2†	373
21009 (8.0) + 8-OH-DPAT	10	44.9 ± 1.9†	238	11	37.2 ± 3.0†	351
Vehicle + vehicle	9	16.6 ± 2.1	100	14	11.5 ± 1.2	100
Vehicle + 8-OH-DPAT	10	43.5 ± 2.8†	261	12	47.1 ± 4.2†	409
Ketanserin (2.0) + 8-OH-DPAT	11	50.7 ± 1.8†‡	305	10	43.0 ± 2.6†	374
Vehicle + vehicle	7	18.8 ± 1.4	100	12	9.2 ± 1.4	100
Vehicle + 8-OH-DPAT	10	42.1 ± 2.3†	224	12	46.4 ± 3.7†	504
Pirenperone (0.1) + 8-OH-DPAT	10	42.8 ± 2.2†	228	12	38.6 ± 2.9†	420
Pirenperone (0.2) + 8-OH-DPAT	10	46.1 ± 3.1†	245	11	43.2 ± 2.3†	470
Vehicle + vehicle	7	15.5 ± 1.2	100			
Vehicle + 8-OH-DPAT	11	49.0 ± 3.2†	316			
ICS 205-930 (3.0) + 8-OH-DPAT	12	$58.2 \pm 1.6^{+}$	375			

8-OH-DPAT was administered SC in a dose of 0.1 mg/kg 30 min before decapitation (I) or in a dose of 0.3 mg/kg 60 min before decapitation (II). 21009 and ICS 205-930 were administered IP 30 or 60 min before 8-OH-DPAT, respectively. Ketanserin and pirenperone were injected SC 30 min before 8-OH-DPAT. Values represent the mean \pm S.E.M.

*mg/kg; p < 0.001 vs. corresponding vehicle + vehicle group; p < 0.05, 0.02 vs. corresponding vehicle + 8-OH-DPAT group.

Spiperone (3 mg/kg), (\pm)-pindolol (2-8 mg/kg), (-)-pindolol (1 mg/kg) and (\pm)-propranolol (4 and 16 mg/kg) significantly attenuated the effect of 8-OH-DPAT on corticosterone secretion, though complete blockade of the effect was observed after spiperone versus the lower dose of 8-OH-DPAT only (Table 1). Lower doses of spiperone (0.3 and 1 mg/kg) and (-)-pindolol (0.1 and 0.3 mg/kg) were ineffective (Table 1).

Pretreatment of rats with 21009 (2 and 8 mg/kg), ketanserin (2 mg/kg), pirenperone (0.1 and 0.2 mg/kg) or ICS 205-930 (3 mg/kg) failed to attenuate the corticosterone response to 8-OH-DPAT (Table 2). On the contrary, a small but significant enhancement of the effect induced by a lower dose of 8-OH-DPAT was observed after ketanserin and ICS 205-930 (Table 2).

Yohimbine (0.125 and 0.5 mg/kg) and idazoxan (1 mg/kg) did not affect the hormone response to 8-OH-DPAT, though the former drug reduced dose-dependently clonidine-induced increase in serum corticosterone (Table 3).

As shown in Tables 4 and 5, 8-OH-DPAT-induced corticosterone secretion was not modified by pimozide (3 mg/kg), atenolol (10 mg/kg), chloropyramine (10 mg/kg), naloxone (10 mg/kg), PCA (2×10 mg/kg) or PCPA (3×150 mg/kg), but that effect was significantly, though only partially, reduced by flumazenil (15 mg/kg).

TABLE 3 THE EFFECT OF α_2 -ADRENOCEPTOR ANTAGONIST ON SERUM CORTICOSTERONE CONCENTRATION INCREASED BY 8-OH-DPAT OR CLONIDINE

		Ι	11			
Treatment	N	µg/dl	%	N	µg/dl	%
Vehicle + vehicle	٥	15.0 ± 1.5	100	Q	6.0 ± 0.6	100
Vehicle + 8-OH-DPAT	-	$40.8 \pm 2.1^{+1.5}$			$52.4 \pm 3.0^{+}$	
Yohimbine (0.125)* + 8-OH-DPAT	-	$38.6 \pm 1.8^{\dagger}$			49.1 ± 1.8†	
Yohimbine (0.5) + 8-OH-DPAT	12	38.1 ± 1.8†	254	8	55.7 ± 3.8†	920
Vehicle + vehicle	10	24.1 ± 2.1	100	10	9.7 ± 0.6	100
Vehicle + 8-OH-DPAT	10	43.5 ± 4.2†	180	10	59.7 ± 3.4†	616
Idazoxan (1.0) + 8-OH-DPAT	11	55.0 ± 3.4†	228	10	58.8 ± 3.2†	606
Vehicle + vehicle	10	15.0 ± 1.5	100			
Vehicle + clonidine	11	41.6 ± 1.1†	277			
Yohimbine (0.125) + clonidine	12	30.1 ± 3.2†‡	201			
Yohimbine (0.5) + clonidine	11	15.1 ± 2.1 §	101			

8-OH-DPAT was administered SC in a dose of 0.1 mg/kg 30 min before decapitation (I) or in a dose of 0.3 mg/kg 60 min before decapitation (II). Clonidine was administered SC in a dose of 0.1 mg/kg 30 min before decapitation. Yohimbine and idazoxan were injected SC or IP, respectively, 30 min before 8-OH-DPAT or clonidine. Values represent the mean \pm S.E.M.

 $mg/kg; \pm 0.001$ vs. corresponding vehicle + vehicle group; $\pm p < 0.01$, 0.001 vs. vehicle + clonidine group.

The examined drugs (except dexamethasone) whose interaction with 8-OH-DPAT was studied, in the doses used, did not affect by themselves the serum corticosterone level (results not shown).

DISCUSSION

In accordance with the recent findings of Koenig *et al.* (20) and Lorens and Van de Kar (24), the results of the present study demonstrate that 8-OH-DPAT, a selective $5-HT_{1A}$ receptor agonist (26), increases the serum corticosterone concentration. Since the formation and secretion of corticosterone from the adrenal glands is stimulated by the anterior pituitary peptide ACTH, whose release is controlled by the hypothalamic corticotropin-releasing hormone, the above effect of 8-OH-DPAT indicates activation of the hypothalamic-pituitary-adrenocortical axis.

To exclude the possibility of a direct effect of 8-OH-DPAT on the adrenal glands, we studied its influence on corticosterone secretion in rats pretreated with dexamethasone. Since the synthetic corticoid completely blocked the 8-OH-DPAT-induced effect, it might be concluded that the corticosterone response to 8-OH-DPAT results from its action at the level superior to the adrenal glands, i.e., at the hypothalamo-pituitary level. This conclusion is in line with the results recently reported by Gilbert *et al.* (10), who found that 8-OH-DPAT increased the rat plasma ACTH concentration. However, since the effect of the drug on the release of the hypothalamic corticotropin-releasing hormone is unknown, and since 5-HT and its agonists can directly stimulate

TABLE 4

THE EFFECT OF VARIOUS RECEPTOR ANTAGONISTS ON SERUM CORTICOSTERONE CONCENTRATION INCREASED BY 8-OH-DPAT

	I					п			
Treatment	N	μg/dl		%	N	µg/dl		%	
Vehicle + vehicle	9	14.4	±	1.3	100	8	7.0	± 1.1	100
Vehicle + 8-OH-DPAT	7	36.0	±	3.4†	249	7	40.4	± 4.6†	578
Pimozide (3.0) + 8-OH-DPAT	7	39.6	±	3.0†	275	7	43.9	± 2.6†	627
Vehicle + vehicle	10	24.4	±	1.1	100	10	7.7	± 1.0	100
Vehicle + 8-OH-DPAT	10	50.1	±	2.5†	206	8	45.2	± 2.1†	587
Atenolol (10.0) + 8-OH-DPAT	14	51.5	±	1.6†	211	9	42.2	± 2.9†	548
Vehicle + vehicle	7	15.5	±	1.2	100				
Vehicle + 8-OH-DPAT	11	49.0	±	3.2†	316				
Chloropyramine (10.0) + + 8-OH-DPAT	13	46.6	±	2.9†	301				
Vehicle + vehicle	10	23.2	±	2.6	100	10	11.8	± 1.5	100
Vehicle + 8-OH-DPAT	11	41.7	±	1.6†	180	9	47.1	± 2.2†	399
Naloxone (10.0) + 8-OH-DPAT	12	40.7	±	2.3†	175	9	38.2	± 3.8†	324
Vehicle + vehicle	8	11.9	±	1.7	100	8	7.9	± 0.8	100
Vehicle + 8-OH-DPAT	8	48.3	±	4.0†	405	7	49.3	± 2.8†	621
Flumazenil (15.0) + 8-OH-DPAT	9	30.8	±	4.7†	259	8	32.3	± 5.2†‡	407

8-OH-DPAT was administered SC in a dose of 0.1 mg/kg 30 min before decapitation (I) or in a dose of 0.3 mg/kg 60 min before decapitation (II). The antagonists were injected IP in following times before 8-OH-DPAT: naloxone-5 min, atenolol and flumazenil-30 min, pimozide and chloropyramine-60 min. Values represent the mean \pm S.E.M.

*mg/kg; p < 0.001 vs. corresponding vehicle + vehicle group; p < 0.02 vs. corresponding vehicle + 8-OH-DPAT group.

the ACTH release from the anterior pituitary (34), the exact site of action of 8-OH-DPAT at the hypothalamo-pituitary level remains unclear. Moreover, the results of studies into distribution of 5-HT receptor subtypes, which might be expected to throw some light on this problem—on the assumption that the hormonal response to 8-OH-DPAT is mediated via 5-HT_{1A} receptors (see below)—do not contribute to solving it. Actually, Pazos and Palacios (29) reported that in different nuclei of the hypothalamus, the 5-HT_{1A} subtype is only a small part of the whole population of 5-HT₁ receptors (most of which exhibit characteristics of the 5-HT_{1B} subtype). Furthermore, in the pituitary (including the anterior lobe), 5-HT₂ receptors were identified, 5-HT₁ ones not having been examined though (4).

The evidence that 8-OH-DPAT-induced elevation in serum corticosterone level results from stimulation of 5-HT_{1A} receptors was presented by Koenig *et al.* (20), who found that this response was blocked by spiperone and pindolol which bind with a relatively high affinity to 5-HT_{1A} sites (5,17). Accordingly, we found that the response to 8-OH-DPAT was antagonized by the two drugs mentioned above as well as by propranolol which also binds to 5-HT_{1A} receptors (5,17). Although spiperone is also an antagonist of dopaminergic and 5-HT₂ receptors (22), whereas pindolol and propranolol are β -blockers with a high affinity to the 5-HT_{1B} sites (5,17), involvement of these receptors in the response to 8-OH-DPAT seems unlikely. In fact, we demonstrated

TABLE 5 THE EFFECT OF p-CHLOROAMPHETAMINE (PCA) AND p-CHLOROPHENYLALANINE (PCPA) ON SERUM CORTICOSTERONE CONCENTRATION INCREASED BY 8-OH-DPAT

Treatment	N	ا µg/dl	%	N	Π μg/dl	%
Vehicle + vehicle		22.2 ± 4.1	100	6	12.5 ± 1.0	100
Vehicle + 8-OH-DPAT	11	50.5 ± 3.5*	228	11	$51.9 \pm 4.7*$	415
PCA + 8-OH-DPAT	14	$45.0 \pm 1.5^*$	203	15	$48.2 \pm 1.7*$	386
Vehicle + vehicle	7	22.2 ± 4.1	100	6	14.6 ± 2.4	100
Vehicle + 8-OH-DPAT	12	46.1 ± 2.9*	208	11	$50.7 \pm 2.7*$	347
PCPA + 8-OH-DPAT	13	46.2 ± 2.8*	208	11	$45.4 \pm 3.5*$	311

8-OH-DPAT was administered SC in a dose of 0.1 mg/kg 30 min before decapitation (I) or in a dose of 0.3 mg/kg 60 min before decapitation (II). PCA (2×10 mg/kg, 192 and 168 hr before 8-OH-DPAT) and PCPA (3×150 mg/kg, 72, 48 and 24 hr before 8-OH-DPAT) were injected IP. Values represent the mean \pm S.E.M.

p < 0.001 vs.corresponding vehicle + vehicle group.

that the response was not attenuated by pimozide, a dopaminergic receptor antagonist with a low affinity to 5-HT receptors (22), and the selective 5-HT₂ receptor antagonists ketanserin and pirenperone (14,23); the latter results are in accordance with those of Koenig *et al.* (20), who found no effect of ketanserin and the other two 5-HT₂ receptor antagonists altanserin and ritanserin. Furthermore, we also observed the lack of antagonistic effects of atenolol, a β -adrenoceptor blocker with no affinity to 5-HT_{1A} and 5-HT_{1B} receptors (16), and 21009, a selective 5-HT_{1B} antagonist (7), having excluded participation of β -adrenoceptors and 5-HT_{1B} receptors. All these results, together with the lack of antagonistic effect of ICS 205-930, a selective antagonist of 5-HT₃ receptors (7), supply evidence indicating involvement of 5-HT_{1A} receptors in the hormonal response induced by 8-OH-DPAT.

However, if our results on 5-HT_{1A} receptor antagonists are compared with those of Koenig et al. (20), there is a noticeable difference. The latter authors demonstrated that corticosterone secretion, induced by 0.1 mg/kg of 8-OH-DPAT, was completely blocked by spiperone and (-)-pindolol administered in doses of 3 and 0.3 mg/kg, respectively. In our experiment those antagonists were not so effective. Having induced the hormonal response using 0.1 or 0.3 mg/kg (submaximal dose) of 8-OH-DPAT, we found that 3 mg/kg of spiperone fully antagonized the effect evoked by the lower dose of the agonist only, while (-)-pindolol, even in a dose of 1 mg/kg, was only partly effective towards the lower dose of 8-OH-DPAT. Furthermore, only partial antagonism was observed after (\pm) -pindolol (against both doses of 8-OH-DPAT) and (\pm) -propranolol (against the lower dose of the agonist), given in doses as high as 8 and 16 mg/kg, respectively. The results obtained with (\pm) -pindolol differ from those of Gilbert et al. (10), who reported that a dose of 4 mg/kg of the drug was sufficient to block completely another hormonal response (ACTH secretion) induced by 0.3 mg/kg of 8-OH-DPAT. The reason for these discrepancies is unclear the more so as our experimental conditions were comparable with those of Koenig et al. (20) and Gilbert et al. (10). However, one essential difference should be pointed out as they performed their experiments on Sprague-Dawley rats, while we used Wistar ones. Therefore, if the strain difference is responsible for the above discrepancies, it may also be postulated that in Wistar rats the corticosterone response to 8-OH-DPAT (especially to higher doses of the drug) is only partly mediated by $5-HT_{1A}$ receptors, and in part by other neurotransmitter receptor(s).

To prove this working hypothesis, we studied the influence of various receptor antagonists on the corticosterone response to 8-OH-DPAT. First of all, we examined the influence of α_2 -adrenoceptor antagonists, since it was reported that these receptors mediate some other responses to 8-OH-DPAT, and since stimulation of α_2 -adrenoceptors leads to corticosterone secretion (see Introduction). However, neither yohimbine nor idazoxan modified the effect of 8-OH-DPAT. Though yohimbine was used in relatively low doses—as those higher than 0.5 mg/kg induce by themselves increase in serum corticosterone (our unpublished results) or ACTH (32) concentrations—they were high enough to block efficiently the elevation of corticosterone level induced by the α_2 -adrenoceptor agonist clonidine. Thus, involvement of these receptors may be excluded.

Furthermore, though central histamine and opiate receptors are also thought to play some role in regulation of corticosterone secretion (37), it is unlikely that 8-OH-DPAT induces increases in the hormone concentration via an interaction with any of these receptors, since neither the histamine (H_1) receptor antagonist chloropyramine nor the opiate receptor blocker naloxone altered the response to 8-OH-DPAT. It is noteworthy that naloxone was administered in the dose that was shown to block morphineinduced corticosterone secretion (35), and the used dose of chloropyramine was equivalent to doses of other histamine (H_1) receptor antagonists, which prevented ACTH response to histamine (31).

On the other hand, a partial but significant reduction of the 8-OH-DPAT-induced effect observed in animals pretreated with flumazenil, an antagonist of benzodiazepine receptors (1), indicates that a direct or indirect interaction between 8-OH-DPAT and these receptors may be involved. In this context it is noteworthy that 8-OH-DPAT induces antianxiety effects in experimental models (2,6), and that the classical anxiolytics benzodiazepines elevate the serum corticosterone level (27,30), this effect being sensitive to flumazenil (27).

Our other results indicate that 5-HT_{1A} receptors, which mediate the hormonal response to 8-OH-DPAT, are located postsynaptically. In fact, in rats in which 5-HT synthesis was inhibited by means of PCPA (19), as well as in animals whose 5-HT nerve terminals were lesioned by PCA (21,28)— both drugs being given in doses which reduce the whole brain 5-HT concentration by about 85–90% (results not shown)—the corticosterone response to 8-OH-DPAT was not affected. These results exclude involvement of presynaptic 5-HT_{1A} receptors located on 5-HT cell bodies or dendrites (38). Such a conclusion is also in line with the general concept that corticosterone secretion is caused by activation of 5-HT system (see Introduction), since stimulation of the presynaptic 5-HT_{1A} receptors by 8-OH-DPAT results in inhibition of the 5-HT synthesis and release (15,18).

In conclusion, the results of this study indicate that, in the rat, 8-OH-DPAT-induced increase in serum corticosterone concentration results from its action at the hypothalamo-pituitary level and is partly mediated by postsynaptic 5-HT_{1A} receptors, whereas other subtypes (5-HT_{1B}, 5-HT₂, 5-HT₃) of 5-HT receptors do not participate in this response. Among other receptors only benzodiazepine ones are involved in the hormonal response to 8-OH-DPAT, whereas dopaminergic, α_2 - and β -adrenergic, as well as histamine (H₁) and opiate receptors, are not.

ACKNOWLEDGEMENTS

The authors thank Sandoz for the drugs (\pm) - and (-)-pindolol, 21009

and ICS 205-930, Janssen Pharmaceutica for ketanserin, pirenperone and spiperone and Hoffmann-La Roche for flumazenil. This work was sup-

ported by the grant CPBP 06.03.3.4 of the Polish Academy of Sciences.

REFERENCES

- Brogden, R. N.; Goa, K. L. Flumazenil. A preliminary review of its benzodiazepine antagonist properties, intrinsic activity and therapeutic use. Drugs 35:448-467; 1988.
- Carli, M.; Samanin, R. Potential anxiolytic properties of 8-hydroxy-2-(di-N-propylamino)tetralin, a selective serotonin_{1A} receptor agonist. Psychopharmacology (Berlin) 94:84–91; 1988.
- Chaouloff, F.; Jeanrenaud, B. 5-HT_{1A} and alpha-2 adrenergic receptors mediate the hyperglycemic and hypoinsulinemic effects of 8-hydroxy-2-(di-n-propylamino)tetralin in the conscious rat. J. Pharmacol. Exp. Ther. 243:1159–1166; 1987.
- De Souza, E. B. Serotonin and dopamine receptors in the rat pituitary gland: autoradiographic identification, characterization, and localization. Endocrinology 119:1534–1542; 1986.
- Engel, G.; Göthert, M.; Hoyer, D.; Schlicker, E.; Hillenbrand, K. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT_{1B} binding sites. Naunyn Schmiedebergs Arch. Pharmacol. 332:1-7; 1986.
- Engel, J. A.; Hjorth, S.; Svensson, K.; Carlsson, A. Liljequist, S. Anticonflict effect of the putative serotonin receptor agonist 8hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Eur. J. Pharmacol. 105:365-368; 1984.
- Fozard, J. R. 5-HT: The enigma variations. Trends Pharmacol. Sci. 8:501-506; 1987.
- 8. Fuller, R. W. Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology 32:118-127; 1981.
- Fuller, R. W.; Snoddy, H. D. Effect of serotonin-releasing drugs on serum corticosterone concentration in rats. Neuroendocrinology 31: 96-100; 1980.
- Gilbert, F.; Brazell, C.; Tricklebank, M. D.; Stahl, S. M. Activation of the 5-HT_{1A} receptor subtype increases rat plasma ACTH concentration. Eur. J. Pharmacol. 147:431-439; 1988.
- Glick, D.; Von Redlich, D.; Levine, S. Fluorometric determination of corticosterone and cortisol in 0.02-0.05 milliliters of plasma or submilligram samples of adrenal tissue. Endocrinology 74:653-655; 1964.
- Goodwin, G. M.; De Souza, R. J.; Green A. R.; Heal, D. J. The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology (Berlin) 91:506-511; 1987.
- Goodwin, G. M.; Green, A. R. A behavioural and biochemical study in mice and rats of putative agonists and antagonists for 5-HT₁ and 5-HT₂ receptors. Br. J. Pharmacol. 84:743-753; 1985.
- Green, A. R.; O'Shaughnessy, K.; Hammond, M.; Schachter, M.; Grahame-Smith, D. G. Inhibition of 5-hydroxytryptamine-mediated behaviour by the putative 5-HT₂ antagonist pirenperone. Neuropharmacology 22:573-578; 1983.
- Hjorth, S.; Carlsson, A.; Lindberg, P.; Sanchez, D.; Wikström, H.; Arvidsson, L.-E.; Hacksell, U.; Nilsson, J. L. G. 8-hydroxy-2-(di-npropylamino)tetralin, 8-OH-DPAT, a potent and selective simplified ergot congener with central 5-HT receptor stimulating activity. J. Neural Transm. 55:169–188; 1982.
- Hoyer, D. Functional correlates of serotonin 5-HT₁ recognition sites. J. Recept. Res.; in press.
- Hoyer, D.; Engel, G.; Kalkman, H. O. Molecular pharmacology of 5-HT₁ and 5-HT₂ recognition sites in rat and pig brain membranes: radioligand binding studies with [³H]5-HT, [³H] 8-OH-DPAT, (-) [¹²⁵I] iodocyanopindolol, [³H]mesulergine and [³H]ketanserin. Eur. J. Pharmacol. 118:13-23; 1985.
- Hutson, P. H.; Dourish, C. T.; Curzon, G. Neurochemical and behavioural evidence for mediation of the hyperphagic action of 8-OH-DPAT by 5-HT cell body autoreceptors. Eur. J. Pharmacol 129:347-352; 1986.
- Koe, B.; Weissman, A. p-Chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmacol. Exp. Ther. 154:499-516; 1966.

- Koenig, J. I.; Gudelsky, G. A.; Meltzer, H. Y. Stimulation of corticosterone and β-endorphin secretion in the rat by selective 5-HT receptor subtype activation. Eur. J. Pharmacol. 137:1-8; 1987.
- Köhler, C.; Ross, S. B.; Srebro, B.; Ögren, S.-O. Long-term biochemical and behavioural effects of p-chloroamphetamine in the rat. Ann. NY Acad. Sci. 305:645-663; 1978.
- Leysen, J. E.; Niemegeers, C. J. E.; Tollenaere, J. P.; Laduron, P. M. Serotonergic component of neuroleptic receptors. Nature 272: 168-171; 1978.
- Leysen, J. E.; Niemegeers, C. J. E.; Van Neuten, J. M.; Laduron, P. M. [³H]Ketanserin (R 41,468), a selective ³H ligand for serotonin₂ receptor binding sites. Mol. Pharmacol. 21:301-314; 1982.
- Lorens, S. A.; Van de Kar, L. D. Differential effects of serotonin (5-HT_{1A} and 5-HT₂) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology 45:305–310; 1987.
- Marsden, C. A.; Martin, K. F. Involvement of 5-HT_{1A} and α₂receptors in the decreased 5-hydroxytryptamine release and metabolism in rat suprachiasmatic nucleus after intravenous 8-hydroxy-2-(ndipropylamino)tetralin. Br. J. Pharmacol. 89:277-286; 1986.
- Middlemiss, D. N.; Fozard, J. R. 8-Hydroxy-2-(di-n- propylamino)tetralin discriminates between subtypes of the 5-HT₁ recognition site. Eur. J. Pharmacol. 50:151–153; 1983.
- Mormede, P.; Dantzer, R.; Perio, A. Relationship of the effects of the benzodiazepine derivative clorazepate on corticosterone secretion with its behavioural actions. Antagonism by Ro 15-1788. Pharmacol. Biochem. Behav. 21:839-843; 1984.
- Neckers, L. M.; Bertilsson, L.; Koslow, S. H.; Meek, J. L. Reduction of tryptophan hydroxylase activity and 5-hydroxytryptamine concentration in certain rat brain nuclei after p-chloroamphetamine. J. Pharmacol. Exp. Ther. 196:333-338; 1976.
- Pazos, A.; Palacios, J. M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 346:205-230; 1985.
- Peričić, D.; Lakić, N.; Manev, H. Effect of diazepam on plasma corticosterone levels. Psychopharmacology (Berlin) 83:79-81; 1984.
- Reilly, M. A.; Sigg, E. B. Suppression of histamine-induced adrenocorticotropic hormone release by antihistamines and antidepressants. J. Pharmacol. Exp. Ther. 222:583-588; 1982.
- Shimizu, K. Effect of α₁- and α₂-adrenoceptor agonists and antagonists on ACTH secretion in intact and in hypothalamic deafferentated rats. Jpn. J. Pharmacol. 36:23-33; 1984.
- Smythe, G. A.; Bradshaw, J. E.; Gleeson, R. M.; Grunstein, H. S.; Nicholson, M. V. The central vs. peripheral effects of clonidine on ACTH, corticosterone and glucose release. Eur. J. Pharmacol. 111: 401-403; 1985.
- Spinedi, E.; Negro-Vilar, A. Serotonin and adrenocorticotropin (ACTH) release: direct effects at the anterior pituitary level and potentiation of arginine vasopressin-induced ACTH release. Endocrinology 112: 1217-1223; 1983.
- 35. Tanaka, M.; Kohno, Y.; Tsuda, A.; Nakagawa, R.; Ida, Y.; Imori, K.; Hoaki, Y.; Nagasaki, N. Differential effects of morphine on noradrenaline release in brain regions of stressed and non-stressed rats. Brain Res. 275:105-115; 1983.
- 36. Tricklebank, M. D.; Forler, C.; Fozard, J. R. The involvement of subtypes of the 5-HT₁ receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur. J. Pharmacol. 106:271-282; 1985.
- Tuomisto, J.; Männistö, P. Neurotransmitter regulation of anterior pituitary hormones. Pharmacol. Rev. 37:249–332; 1985.
- Verge, D.; Daval, G.; Patey, A.; Gozlan, H.; El Mestikawy, S.; Hamon, M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT_{1A} subtype. Eur. J. Pharmacol. 113:463-464; 1985.